Medial frontal cortex motivates but does not control movement initiation in the countermanding task.

نویسندگان

  • Katherine Wilson Scangos
  • Veit Stuphorn
چکیده

Voluntary control of behavior implies the ability to select what action is performed. The supplementary motor area (SMA) and pre-SMA are widely considered to be of central importance for this ability because of their role in movement initiation and inhibition. To test this hypothesis, we recorded from neurons in SMA and pre-SMA of monkeys performing an arm countermanding task. Temporal analysis of neural activity and behavior in this task allowed us to test whether neural activity is sufficient to control movement initiation or inhibition. Surprisingly, 99% (242 of 243) of movement-related neurons in SMA and pre-SMA failed to exhibit time-locked activity changes predictive of movement initiation in this task. We also found a second group of neurons that was more active during successful response cancelation. Of these putative inhibitory cells, 18% (7 of 40) responded early enough to be able to influence the cancelation of the movement. Thus, when tested with the countermanding task, the SMA/pre-SMA region may play a role in movement inhibition but does not appear to control movement initiation. However, the activity of 76% (202 of 267) of movement-related neurons was contingent on the expectation of reward and 42% of them reflected the amount of expected reward. These findings suggest that the movement-related activity in pre-SMA and SMA might represent the motivation for a specific action but does not determine whether or not that action is performed. This motivational signal in pre-SMA and SMA could provide an essential link between reward expectation and motor execution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance monitoring by presupplementary and supplementary motor area during an arm movement countermanding task.

A key component of executive control and decision making is the ability to use the consequences of chosen actions to update and inform the process of future action selection. Evaluative signals, which monitor the outcomes of actions, are critical for this ability. Signals related to the evaluation of actions have been identified in eye movement-related areas of the medial frontal cortex. Here w...

متن کامل

Proactive and reactive control by the medial frontal cortex

Adaptive behavior requires the ability to flexibly control actions. This can occur either proactively to anticipate task requirements, or reactively in response to sudden changes. Recent work in humans has identified a network of cortical and subcortical brain region that might have an important role in proactive and reactive control. However, due to technical limitations, such as the spatial a...

متن کامل

Monitoring and Control of Action by the Frontal Lobes

Success requires deciding among alternatives, controlling the initiation of movements, and judging the consequences of actions. When alternatives are difficult to distinguish, habitual responses must be overcome, or consequences are uncertain, deliberation is necessary and a supervisory system exerts control over the processes that produce sensory-guided movements. We have investigated these pr...

متن کامل

Performance monitoring by the anterior cingulate cortex during saccade countermanding.

Consensus is emerging that the medial frontal lobe of the brain is involved in monitoring performance, but precisely what is monitored remains unclear. A saccade-countermanding task affords an experimental dissociation of neural signals of error, reinforcement, and conflict. Single-unit activity was monitored in the anterior cingulate cortex of monkeys performing this task. Neurons that signale...

متن کامل

Role of frontal eye fields in countermanding saccades: visual, movement, and fixation activity.

A new approach was developed to investigate the role of visual-, movement-, and fixation-related neural activity in gaze control. We recorded unit activity in the frontal eye fields (FEF), an area in frontal cortex that plays a central role in the production of purposeful eye movements, of monkeys (Macaca mulatta) performing visually and memory-guided saccades. The countermanding paradigm was e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 30 5  شماره 

صفحات  -

تاریخ انتشار 2010